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Project logistics
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Choose a problem related to your research, and use AI to solve it.

Team size: 1-3 people

Timeline: 
• By March 25 (5th class): submit team composition in Feishu
• April 15 & 22 (8th and 9th class): Mid-term course project design (presentation) 30 point
• June 3 & 11 (15th and 16th class): Summary presentation (30 point) and final report (35 point)

Encourage interdisclinary teams: if a team has both AI and non-AI students 
(all team members must contribute substantially), the total project score will add 5 points.

How to form teams: Can shout out in the “Random” channel in Feishu



Project guideline
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Mid-term course project design
• Give a presentation (10min) that formulates the problem for the 5 questions, each with one slide:

1. What is the problem?
2. Why is it important
3. Why is it hard?
4. What is the limitation of the prior method?
5. What is the main component of the proposed method?

    Then detail the proposed method (3-4 slides) that uses an AI technique to solve the problem



• Deep learning: fundamentals (Prof. Tailin Wu)
• Two foundational principles
• Their realization in neural architecture and learning

• Optimization (SGD) and federative learning (Prof. Tao Lin)
• Optimization with SGD
• Federative learning
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Outline



Previous class: a bird-eye view of deep learning
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• Classification/ 
regression

• Simulation
• Inverse design/ 

inverse problem
• Control/planning

Tasks

• Supervised learning
• Generative modeling
• Foundation models
• Reinforcement learning
• Evolutionary and multi-

objective optimization

Learning paradigm

×

Application (AI & Science)

• Robotics
• Games (e.g., Go, atari)

• Autonomous Driving
• PDEs

• Life science
• Materials science

• Multilayer perceptron
• Graph Neural 

Networks
• Convolutional Neural 

Networks
• Transformers

Neural architecture

×



Foundational principles in deep learning
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What are the most important insights from 30 years of deep learning? 
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A
B

Method 1: go from A to B in a straight line
                (learn a direct mapping from A to B)

Hard to learn due to the complexity 
of A, B and their difference!

Foundational principles in deep learning 1

What are the most important insights from 30 years of deep learning? 
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What is the most important insight from 30 years of deep learning? 

A
B

Method 2: go from A to B in small, easier steps 
                (compose step-by-step simple mappings to map A to B)

Much easier!

Foundational principles in deep learning 1
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Insight: to construct a complex mapping from A to B, it is much easier to 
compose simple mappings

A
B

input target

“cat”

deep neural networks

Meow~

Foundational principles in deep learning 1
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Insight: to construct a complex mapping from A to B, it is much easier to 
compose simple mappings

A
B

gradient w.r.t. 
parameter

loss

𝐿 = MSE 𝑓! 𝑥 , 𝑦
𝜕𝐿
𝜕𝜃

Backpropagation反向传播

Foundational principles in deep learning 1
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Insight: to construct a complex mapping from A to B, it is much easier to 
compose simple mappings

A
B

Gaussian distribution data distributiondiffusion model

Foundational principles in deep learning 1
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Insight: to construct a complex mapping from A to B, it is much easier to 
compose simple mappings

A
B

Gaussian distribution data distributiondiffusion model

Foundational principles in deep learning 1
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Insight: to construct a complex mapping from A to B, it is much easier to 
compose simple mappings

A
B

starting configuration target configurationreinforcement learning

…

Foundational principles in deep learning 1



Foundational principles in deep learning
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What are the most important insights from 30 years of deep learning?

1. Model a hard transformation by composing many simple, easy 
transformations.
This principle underlies all neural architectures and learning paradigms

How to tackle a task using deep learning:
1. Specify the task (including input, target), and define its learning objective;
2. Choose appropriate neural architecture and learning process;
3. Train, evaluate (and iterate)

2. Directly optimizing the final objective using probability and information theory
Almost all learning objectives can be reduced to maximum likelihood or 
minimizing/maximizing information



Foundational principles in deep learning
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What are the most important insights from 30 years of deep learning?

1. Model a hard transformation by composing many simple, easy 
transformations.
This principle underlies all neural architectures and learning paradigms
• Multilayer Perceptron (MLP)
• Backpropagation

2. Directly optimizing the final objective using probability and information theory
Almost all learning objectives can be reduced to maximum likelihood or 
minimizing/maximizing information

Interactive notebook: https://github.com/AI4Science-
WestlakeU/frontiers_in_AI_course 

https://github.com/AI4Science-WestlakeU/frontiers_in_AI_course
https://github.com/AI4Science-WestlakeU/frontiers_in_AI_course


Multilayer Perceptron (MLP)
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input target

“cat”

𝜎(𝑊"𝜎 …𝜎 𝑊#𝜎 𝑊$𝑥 + 𝑏$ + 𝑏# …+ 𝑏"An MLP 𝑓! with 𝑛 layers:

𝑓!

An MLP 𝑓! with 1 layer:  𝜎 𝑊$𝑥 + 𝑏$ : linear transformation with nonlinear activation

𝑊": weight matrix to be learned
𝑏": bias vector to be learned
𝜎: (nonlinear) activation function

(Application of the foundational principle 1)



Activation function
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ReLU (Rectified Linear Unit) LeakyReLU

negative_slope=0.1

ReLU(𝑥) 	= 	max(0, 𝑥)



Activation function
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Sigmoid

Sigmoid 𝑥 = #
#$%&' ()

ELU (Exponential Linear Unit)

ELU 𝑥 = ,𝑥, 	 𝑥 > 0
𝑒! − 1, 𝑥 ≤ 0



Activation function
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SiLU (Sigmoid Linear Unit)

SiLU 𝑥 = 𝑥 ⋅ Sigmoid(𝑥)

GELU (Gaussian Error Linear Unit)

SiLU 𝑥 = 𝑥 ⋅ Φ(𝑥)

Φ 𝑥  is the cumulative distribution 
function for Gaussian distribution



Activation function

20

Activation function Advantages Drawbacks

ReLU Simple, suitable for classification Can have some “dead neurons”
The network is piecewise linear

LeakyReLU Does not have dead neurons The network is piecewise linear

ELU Typically useful for regression

Sigmoid Output contrained to [0,1] If input is far from 0, then have 
saturation (vanishing gradient)

SiLU Typically useful for regression

GELU Typically useful for regression

Typically try ReLU, LeakyReLU, ELU, and SiLU in hyperparameter search



MLP: universal approximation theorem
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input target

“cat”

Here 𝑓! 𝑥 = 𝑊*𝜎 𝑊#𝑥 + 𝑏#

An MLP 𝑓! that has 1 hidden layer (with arbitrary width) and a nonlinear activation function can 
approximate any function to arbitrary precision [1][2].

𝑓!

[1] Funahashi, Ken-Ichi. "On the approximate realization of continuous mappings by neural networks." 
Neural networks 2.3 (1989): 183-192.
[2] Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal 
approximators." Neural networks 2.5 (1989): 359-366.
[3] Rolnick, David, and Max Tegmark. "The power of deeper networks for expressing natural 
functions." ICLR 2018

• With one hidden layer, may need exponential number of neurons w.r.t. input size
• With more layers, the neurons needed may be polynomial [3]



Learning with gradient descent
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𝑓! 𝑥 = 𝜎(𝑊"𝜎 …𝜎 𝑊#𝜎 𝑊$𝑥 + 𝑏$ + 𝑏# …+ 𝑏"

To fit dataset 𝑥", 𝑦" , 𝑖 = 1,2, …𝑁, we can use Mean 
Squared Error (MSE):

𝐿 𝜃 =
1
𝑁
2
"+#

,

𝑦" − 𝑓! 𝑥"
*

How can we optimize the parameter 𝜃 = 𝑊#, , …𝑊-, 𝑏#, … 𝑏- ?

𝐿(𝜃)

𝜃 (typically high dimensional)

−
𝜕𝐿

𝜕𝜃("#$)

Answer: compute ./
.!

, then we can perform gradient descent : 

𝜃(1) ← 𝜃(1(#) − 𝜂
𝜕𝐿

𝜕𝜃(1(#)

𝜂: learning rate



Backpropagation
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Consider:
𝑧 = 𝑓 𝑦 , 𝑦 = 𝑓 𝑥 , 𝑥 = 𝑓 𝑤

𝑧 = 𝑓 𝑓 𝑓 𝑤

𝑤

𝑥

𝑦

𝑧

𝑓

𝑓

𝑓

Chain rule:
𝜕𝑧
𝜕𝑤

=
𝜕𝑧
𝜕𝑦
𝜕𝑦
𝜕𝑥

𝜕𝑥
𝜕𝑤

= 𝑓3 𝑦 𝑓3 𝑥 𝑓3 𝑤

Observation: 
1. We need to store intermediate result 𝑥, 𝑦 to 

avoid recomputing them.
2. Goes layer-by-layer from output to input.

𝑓" 𝑦

𝑓" 𝑥

𝑓" 𝑤



Backpropagation
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Let’s take a two layer MLP 𝑓! 𝑥 = 𝑊*𝜎 𝑊#𝑥 + 𝑏#  
as an example:

𝑊#

𝑧#
(#)

𝑧#
(&)

𝑧#
(')

𝜎

+

matmul

Objective: 𝑙 = 𝑦 − 𝑓! 𝑥
* 

𝑥

𝑏#

𝑊&

𝑧&

matmul

𝑦
-

𝑧'

𝑙 square
Objective

input

target

𝑧: intermediate 
results

𝜕𝑙
𝜕𝑊*

=
𝜕𝑙
𝜕𝑧4

⋅
𝜕𝑧4
𝜕𝑧*

⋅
𝜕𝑧*
𝜕𝑊*

DE
DF%

= DE
DG&

⋅ DG&DG'
⋅ DG'
DG%

(&) ⋅
DG%

(&)

DG%
(') ⋅

DG%
(')

DG%
(%) ⋅

DG%
(%)

DF%

DE
DH%

= DE
DG&

⋅ DG&DG'
⋅ DG'
DG%

(&) ⋅
DG%

(&)

DG%
(') ⋅

DG%
(')

DH%

𝜕𝑙
𝜕𝑊&

𝜕𝑙
𝜕𝑏#

𝜕𝑙
𝜕𝑊#

shared, no need to recompute



Foundational principles in deep learning 1: summary
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1.  Model a hard transformation by composing many simple, easy transformations.
This principle underlies all neural architectures and learning paradigms
• Multilayer Perceptron (MLP)
• Backpropagation
• Optimization with gradient descent (Tao Lin will teach in the second half) 



Foundational principles in deep learning
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2. Directly optimizing the final objective using probability and information theory
Almost all learning objectives can be reduced to maximum likelihood or 
minimizing/maximizing information

Maximum likelihood objective underlies:
• MSE loss
• Uncertainty quantification
• Variational autoencoder (VAE)
• Diffusion model

Information-based objective underlies:
• Cross-entropy loss
• Information Bottleneck
• GAN, infoGAN
• Contrastive learning
• InfoMax: Deep Graph InfoMax
• Active learning
• Reinforcement learning: 

• Exploration vs. exploitation tradeoff, empowerment



Maximum likelihood
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We have data 𝑥" , 𝑖 = 1, …𝑁, and want to use a probability model 𝑝! 𝑥  to model it.
Maximizing the likelihood is equivalent to minimizing the negative log-likelihood:

− log𝑃 𝑥" "+#, = − log@
"+#

,

𝑝! 𝑥" = −2
"+#

,

log 𝑝! 𝑥"



Maximum likelihood: deriving MSE
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We have data (𝑥", 𝑦") , 𝑖 = 1,…𝑁, and want to use a probability model 𝑝! 𝑦|𝑥  to model it.

Here we assume 𝑝! 𝑦|𝑥 ∼ 𝒩 𝑦; 𝜇! 𝑥 , 𝜎!* 𝑥  is a conditional Gaussian:

𝑝! 𝑦|𝑥 =
1

2𝜋𝜎! 𝑥
𝑒
(
5(6! ) "

*7!
" )

=2
"+#

,
𝑦 − 𝜇! 𝑥

*

2𝜎!
* 𝑥

+ log 𝜎! 𝑥

Assuming 𝜎! 𝑥 ≡ 1, we have − log𝑃 𝑌|𝑋 =
1
2
2
"+#

,

𝑦 − 𝜇! 𝑥
* MSE loss

− log𝑃 𝑌|𝑋 = − log@
"+#

,

𝑝! 𝑦"|𝑥" = −2
"+#

,

log 𝑝! 𝑦"|𝑥" 𝑋 = 𝑥( ()#* , 𝑌 = 𝑦( ()#*

We have



Maximum likelihood: deriving MSE
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Prediction by initial model 𝑓+: Prediction after training 𝑓+:



Maximum likelihood: estimating uncertainty

30

− log𝑃 𝑌|𝑋 =2
"+#

,
𝑦 − 𝜇! 𝑥

*

2𝜎!* 𝑥
+ log 𝜎! 𝑥

If 𝜎! 𝑥  can be learned, we can also estimate uncertainty [1]:

Prediction by initial model 𝑓+: Prediction by trained model 𝑓+:



Foundational principles in deep learning
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2. Directly optimizing the final objective using probability and information theory
Almost all learning objectives can be reduced to maximum likelihood or 
minimizing/maximizing information

Maximum likelihood objective underlies:
• MSE loss
• Uncertainty quantification
• Variational autoencoder (VAE)
• Diffusion model

Information-based objective underlies:
• Cross-entropy loss
• Information Bottleneck
• GAN, infoGAN
• Contrastive learning
• InfoMax: Deep Graph InfoMax
• Active learning
• Reinforcement learning: 

• Exploration vs. exploitation tradeoff, empowerment



A type of Venn diagram to illustrate relationships among Shannon's basic measures of information for 
(multiple) variables.

32

H(X)

H(X): entropy of variable X, means the expected amount 
of information conveyed by identifying the outcome of a 
random sampling.

E.g. if X is a categorical variable taking values in X \in {1,2,3} 
with probability of {¼,¼, ½}.
When we draw a sample, and get e.g. X=1, the probability of 
it happening is P(X=1)=¼, this event gains us 
of information.

Information diagram

Entropy: 

Alternatively, we can understand it as the amount of information needed to 
deterministically specify a random variable.



For multiple variables, we can treat each circle as a “set”.
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: entropy of X conditioned on Y

Meaning: given Y, how much more 
information needed to fully specify X.

Meaning: how much information obtained 
about X by observing Y

: mutual information between X
and Y

Information diagram



For multiple variables, we can treat each circle as a “set”.
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Using set operations in the Venn diagram, we 
can easily derive:

(each area is counted once)

Information diagram



If Y is a deterministic function of X, how does the information diagram look like?
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=

Given X, the amount of information needed 
to specify Y is 0.

We can then easily derive:

Information diagram: quiz



Procedure: (1) Specify dependence between variables; (2) Draw information diagram
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Scenario: we have variables of 𝑋 (images) and 𝑌 (labels). We also have a neural network that 
maps 𝑋 to latent representation 𝑍, based on which we make prediction 

Dependence: 
Since Z is a function of X, we have: 
conditioned on X, Z is independent of Y:

Information diagram: more variables



To maximize some quantity 𝑄 that is hard to optimize, we can maximize a learnable quantity 
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that is less than 𝑄 (similar goes for minimizing)

Example: Evidence Lower Bound (ELBO) in variational autoencoder (VAE) [1], which is a lower bound 
for the log-likelihood of data.

[1] Kingma, Diederik P., and Max Welling. "Auto-
encoding variational bayes." arXiv preprint 
arXiv:1312.6114 (2013).

How to optimize the information-based objective?
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X are images, Y are corresponding labels. We have an encoder that takes as 
input X and outputs representation Z, which then predict label

Dependence:

Objective: 

imagelabel latent 
repr.

predicted label

Maximizing mutual information



39

X are images, Y are corresponding labels. We have an encoder that takes as 
input X and outputs representation Z, which then predict label

Ignoring the constant            , we are maximizing 

(negative of cross-entropy!)

(definition)

Maximizing mutual information: cross-entropy
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X are images, Y are corresponding labels. We have an encoder that takes as 
input X and outputs representation Z, which then predict label

Dependence:

imagelabel latent 
repr.

predicted label

Objective: 
so that Z contains less information that is not relevant 
to predict Y: improving robustness and generalization

Minimizing mutual information
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X are images, Y are corresponding labels. We have an encoder that takes as 
input X and outputs representation Z, which then predict label

(definition)

can be approximated by a Gaussian or mixture of Gaussian, similar to 
the prior term in VAE

(Monte Carlo estimation of the integral)

Minimizing mutual information
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Information Bottleneck [1][2]

min 𝐿 = 𝐼 𝑍; 𝑋 − 𝛽 ⋅ 𝐼 𝑌; 𝑍

[1] Tishby, Naftali, Fernando C. Pereira, and William Bialek. "The information bottleneck 
method." arXiv preprint physics/0004057 (2000).
[2] Alemi, Alexander A., et al. "Deep variational information bottleneck." ICLR 2017.
[3] Wu, Tailin, et al. "Graph information bottleneck." NeurIPS 2020.
[4] Achille, Alessandro, and Stefano Soatto. "Emergence of invariance and 
disentanglement in deep representations." JMLR 19.1 (2018): 1947-1980.
[5] Lu, Xingyu, et al. "Dynamics generalization via information bottleneck in deep 
reinforcement learning." arXiv preprint arXiv:2008.00614 (2020).
[6] Sharma, Archit, et al. "Dynamics-aware unsupervised discovery of skills." arXiv 
preprint arXiv:1907.01657 (2019).
[7] Goyal, Anirudh, et al. "Infobot: Transfer and exploration via the information 
bottleneck." arXiv preprint arXiv:1901.10902 (2019).

≃
1
𝑁5

%&$

'

𝔼(∼*((|-,) log 𝑞! 𝑦% 𝑧 − 𝛽 ⋅ 𝑝! 𝑧|𝑥% log
𝑝! 𝑧 𝑥%
𝑟! 𝑧

Application of Information Bottleneck:
• Robust against adversarial attacks [2][3]
• Learning invariant and disentangled representations [4]
• RL: 

• Improving generalization [5]
• Facilitating skill discovery [6] 
• Learning goal-conditioned policy [7]



Foundational principles in deep learning
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2. Directly optimizing the final objective using probability and information theory
Almost all learning objectives can be reduced to maximum likelihood or 
minimizing/maximizing information

Maximum likelihood objective underlies:
• MSE loss
• Uncertainty quantification
• Variational autoencoder (VAE)
• Diffusion model

Information-based objective underlies:
• Cross-entropy loss
• Information Bottleneck
• GAN, infoGAN
• Contrastive learning
• InfoMax: Deep Graph InfoMax
• Active learning
• Reinforcement learning: 

• Exploration vs. exploitation tradeoff, empowerment



Foundational principles in deep learning: Summary
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1.   Model a hard transformation by composing many simple, easy 
transformations.

• Multilayer Perceptron (MLP)
• Backpropagation

2. Directly optimizing the final objective using probability and information theory
• Maximum likelihood: MSE, uncertainty estimation
• Information: cross-entropy, Information Bottleneck

Interactive notebook: https://github.com/AI4Science-
WestlakeU/frontiers_in_AI_course 

https://github.com/AI4Science-WestlakeU/frontiers_in_AI_course
https://github.com/AI4Science-WestlakeU/frontiers_in_AI_course

